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Abstract—Over the last decade, a number of Computational Imag-
ing (CI) systems have been proposed for tasks such as motion
deblurring, defocus deblurring and multispectral imaging. These
techniques increase the amount of light reaching the sensor via
multiplexing and then undo the deleterious effects of multiplexing by
appropriate reconstruction algorithms. Given the widespread appeal
and the considerable enthusiasm generated by these techniques,
a detailed performance analysis of the benefits conferred by this
approach is important.

Unfortunately, a detailed analysis of CI has proven to be a
challenging problem because performance depends equally on three
components: (1) the optical multiplexing, (2) the noise characteristics
of the sensor, and (3) the reconstruction algorithm which typically
uses signal priors. A few recent papers [10], [9], [42] have performed
analysis taking multiplexing and noise characteristics into account.
However, analysis of CI systems under state-of-the-art reconstruc-
tion algorithms, most of which exploit signal prior models, has proven
to be unwieldy. In this paper, we present a comprehensive analysis
framework incorporating all three components.

In order to perform this analysis, we model the signal priors using
a Gaussian Mixture Model (GMM). A GMM prior confers two unique
characteristics. Firstly, GMM satisfies the universal approximation
property which says that any prior density function can be approx-
imated to any fidelity using a GMM with appropriate number of
mixtures. Secondly, a GMM prior lends itself to analytical tractability
allowing us to derive simple expressions for the ‘minimum mean
square error’ (MMSE) which we use as a metric to characterize the
performance of CI systems. We use our framework to analyze sev-
eral previously proposed CI techniques (focal sweep, flutter shutter,
parabolic exposure, etc.), giving conclusive answer to the question:
‘How much performance gain is due to use of a signal prior and
how much is due to multiplexing? Our analysis also clearly shows
that multiplexing provides significant performance gains above and
beyond the gains obtained due to use of signal priors.

Index Terms—Computational imaging, Extended depth-of-field
(EDOF), Motion deblurring, GMM

1 INTRODUCTION
Computational Imaging systems can be broadly categorized
into two categories [37]: those designed either to add a
new functionality or to increase performance relative to a
conventional imaging system. A light field camera [38],
[47], [27], [34] is an example of the former: it can be used
to refocus or change perspective after images are captured
- a functionality impossible to achieve with a conventional
camera. The latter type of systems are the focus of this
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Fig. 1. Effect of signal prior on multiplexing gain of focal
sweep [26]: We show the multiplexing gain of focal
sweep over impulse imaging (a conventional camera
with stopped down aperture) at different photon to
read noise ratios J/σ2

r . The photon to read noise ratio
is related to illumination level and camera specifica-
tions. In the extended x-axis, corresponding to different
values of J/σ2

r , we show the light levels (in lux) for
three camera types: a high end SLR, a machine vision
camera (MVC) and a smartphone camera (SPC). As
shown by Cossairt et al. [10], without using signal
priors, we get a huge multiplexing gain at low J/σ2

r .
But with a signal prior (GMM) the multiplexing gain
is modest even at low J/σ2

r . Thus, this figure clearly
shows the importance of analyzing CI systems with
signal priors taken into account.

paper, and from here on we use the term CI to refer to them.
Examples include extended depth-of-field (EDOF) systems
[28], [47], [53], [24], [26], [13], [23], [30], [18], [5], [39],
[17], motion deblurring [41], [33], [8], spectroscopy [21],
[20], [48], color imaging [4], [25], multiplexed light field
acquisition [47], [27], [34] and illumination multiplexing
[44], [42]. These systems use optical coding (multiplexing)
to increase light throughput, which increases the SNR of
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captured images. The desired signal is then recovered com-
putationally via signal processing. The quality of recovered
images depends jointly on the conditioning of the optical
coding and the increased light throughput. A poor choice
of multiplexing will reduce image quality.

The question of exactly how much performance im-
provement can be achieved via multiplexing has received
a fair amount of attention in the literature [21], [9], [10],
[25], [44], [49], [42], [23], [22]. It is well understood that
multiplexing gives the greatest advantage at low light levels
(where signal-independent read noise dominates), but this
advantage diminishes with increasing light (where signal-
dependent photon noise dominates) [21]. However, it is
impractical to study the effects of multiplexing alone, since
signal priors are at the heart of every state-of-the-art re-
construction algorithm (e.g. dictionary learning [2], BM3D
[12], GMM [51], [36]). Signal priors can dramatically in-
crease performance in problems of deblurring (multiplexed
sensing) and denoising (no multiplexing), typically with
greater improvement as noise increases (i.e. as the light
level decreases). While both signal priors and multiplexing
increase performance at low light levels, the former is
trivial to incorporate and the latter often requires hardware
modifications. Thus, it is imperative to understand the
improvement due to multiplexing above and beyond that
due to signal priors. However, comprehensive analysis of CI
systems remains an elusive problem because state-of-the-art
priors often use signal models unfavorable to analysis.

In this work, we follow a line of research whose goal
is to derive bounds on the performance of CI systems
[42], [25], and relate maximum performance to practi-
cal considerations (e.g. illumination conditions and sensor
characteristics) [10]. We follow the convention adopted by
Cossairt et al.[10]. We define a conventional camera as
an impulse imaging system which measures the desired
signal directly (e.g. without blur). CI performance is then
compared against the impulse imaging system. Noise is
related to the lighting level, scene properties and sensor
characteristics. In this paper, we pay special attention to
the problems of defocus and motion blur. This type of blur
can be position dependent when objects in the scene span
either a range of depths or velocities. Various techniques
have been devised to encode blur so as to make it either
well-conditioned or position-independent (shift-invariant),
or both. For defocus deblurring, CI systems encode defocus
blur using attenuation masks [28], [47], [53], refractive
masks [13], or motion [24], [26]. The impulse imaging
counterpart is a narrow aperture image with no defocus
blur. For motion deblurring, CI systems encode motion blur
using a fluttered shutter [41] or camera motion [33], [8].
The impulse imaging counterpart is an image with short
exposure time and no motion blur. Cossairt et al. derived
an upper bound stating that the maximum gain due to
multiplexing is quite large at low light levels. For example,
in Figure 1, the multiplexing gain of focal sweep is > 10
dB for a low photon to read noise ratio < 0.1. However, as
we show in this paper, this makes for an exceptionally weak
bound because signal priors are not taken into account

In practice, signal priors can be used to improve the
performance of any camera, impulse and computational
alike. Since incorporating a signal prior can be done merely
by applying an algorithm to captured images, it is natural to
expect that we would always choose to do so. However, it
has historically been very difficult to determine exactly how
much of an increase in performance to expect from signal
priors, making it difficult to provide a fair comparison
between different cameras.

We present a comprehensive framework that allows us
to analyze the performance of CI systems while simultane-
ously taking into account multiplexing, sensor noise, and
signal priors. We characterize the performance of CI sys-
tems under a GMM prior which has two unique properties:
Firstly, GMM satisfies the universal approximation property
which says that any probability density function (with a
finite number of discontinuities) can be approximated to
any fidelity using a GMM with an appropriate number
of mixtures [45], [40]. Secondly, a GMM prior lends
itself to analytical tractability allowing us to derive simple
expressions for the MMSE, which we use as a metric to
characterize the performance of both impulse and computa-
tional imaging systems. We use our framework to analyze
several previously proposed CI techniques (focal sweep,
flutter shutter, parabolic exposure, etc.), giving conclusive
answers to the questions: ‘How much gain is due to the
use of a signal prior and how much is due to multiplexing?
What is the multiplexing gain above and beyond that due
to use of a signal prior?’.

We show that the SNR benefits due to the use of a signal
prior alone are quite large in low light and decrease as
the light level increases (see Figure 1). We then provide
comparisons between different cameras when signal priors
are taken into account. We show that multiplexing provides
a performance gain above and beyond the gain offered by
the use of signal priors (as much as 6− 9 dB in Figure 4).
This indicates that CI techniques uniformly improve the
performance of traditional imaging over a wide range of
light levels above and beyond the benefits conferred due to
sophisticated reconstruction algorithms.

1.1 Key Contributions
1) We extend the analysis of CI systems to include

signal priors. Our analysis is based on the GMM
prior, which can approximate almost any probability
density function and is analytically tractable.

2) We use the GMM prior to quantify exactly how much
the use of signal priors can improve the performance
of a given camera. We derive an expression for the
maximum performance of any camera that depends
only on the parameters for the camera, noise, and
learned signal prior.

3) We derive bounds on the performance of CI systems
with signal priors taken into account. We show that
the maximum increase in SNR due to multiplexing
alone can be significant (about 9 dB for defocus
deblurring cameras, see Figure 4, and 7 dB for motion
deblurring, see Figure 5). This performance gain is
much more modest than predicted previously[10],



3

but conclusively establishes the advantage of using
multiplexing above and beyond the use of image
priors.

1.2 Scope and Limitations
Image Formation Model. Our analysis assumes a linear
image formation model. Non-linear imaging systems, such
as a two/three photon microscopes and coherent imaging
systems are outside the scope of this paper. Nevertheless,
our analysis covers a very large array of existing imaging
systems [41], [47], [28], [48], [25], [42]. We use a geomet-
ric optics model and ignore the effect of diffraction due to
small apertures.

Noise Model. We use an affine noise model to describe
the combined effects of signal-independent and signal-
dependent noise. Signal-dependent Poisson noise is ap-
proximated using a Gaussian noise model (as described in
Section 3.2).

Single Image Capture. We perform analysis of only single
image CI techniques. Our results are therefore not applica-
ble to multi-image capture techniques such as Hasinoff et
al. [22] (EDOF), and Zhang et al. [52] (Motion Deblurring).

Patch Based Prior. Learning a GMM prior on entire
images would require an impossibly large training set. To
combat this problem, we train our GMM on image patches,
and solve the image estimation problem in a patch-wise
manner. As a result, our technique requires that multiplexed
measurements are restricted to linear combinations of pixels
in a neighborhood smaller than the GMM patch size.

Shift-Invariant Blur. We analyze motion and defocus
deblurring cameras under the assumption of a single known
shift-invariant blur kernel. This amounts to the assumption
that either the depth/motion is position-independent, or the
blur is independent of depth/motion. We do not analyze er-
rors due to inaccurate kernel estimation (for coded aperture
and flutter shutter [41], [47], [28]) or due to the degree of
depth/motion invariance (for focal sweep, cubic phase plate,
motion invariant photography [11], [3], [33], [8]).

2 RELATED WORK
Theoretical Analysis of CI systems: Harwit and Sloan
[21] analyzed coded imaging systems and have shown that,
in absence of photon noise, Hadamard and S-matrices are
optimal. Wuttig and Ratner et al. [49], [42], [43] then
extended the analysis to include both photon and read noise
and showed that there is significant gain in multiplexing
only when the read noise dominates over photon noise.
Ihrke et. al. [25] analyzed the performance of different
light field cameras and color filter arrays. Tendero [46]
has analyzed the performance of flutter shutter cameras
with respect of impulse imaging (short exposure imaging).
Agarwal and Raskar compared the performance of flutter
shutter and motion invariant cameras [1]. Recently, Cossairt
et. al. [10], [9] has obtained optics independent upper
bounds on performance for various CI techniques. They
have shown that CI techniques have significant performance
advantage over impulse imaging only when the average

signal level is below the read noise variance. However, all
the above works, do not analyze the performance of CI
systems when a signal prior is used for demultiplexing.
Cossairt et al. [10] have performed empirical experiments
to study the effect of priors, but conclusions drawn based
from simulations are usually limited.

Performance Analysis using Image Priors: In the context
of defocus deblurring, Zhou et al. [53] have used a Gaussian
signal prior and Gaussian noise model to search for good
aperture codes. In the context of light field imaging (LF),
Levin et al. [29] have proposed the use of a GMM light field
prior for comparing across different LF camera designs.
They have used the mean square error as a metric for
comparing the cameras. However, they do not take into
account the effect of lighting level and photon noise.

Our approach is inspired in part by the recent analysis
on the fundamental limits of the performance of image
denoising [6], [31], [32], the only papers that we are aware
of that directly address the issue of performance bounds in
the presence of image priors. Both of these recent results,
model image statistics through a patch based image prior
and derive lower bounds on the MMSE for the problem
of image denoising. We loosely follow the approach here
and extend the analysis to general computational imaging
systems. In order to render both computational tractability
and generality, we use a GMM with a sufficient number of
mixtures to model the prior distribution on image patches.
Similar to [6], [31], [32], we then derive bounds and
estimates for the MMSE and use these to analyze CI
systems.

Practical Implications for CI systems: Cossairt et. al.
[10] have analyzed CI systems taking into consideration
the application (e.g. defocus deblurring or motion deblur-
ring), lighting condition (e.g. moonlit night or sunny day),
scene properties (e.g. albedo, object velocity) and sensor
characteristics (size of pixels). They have shown that, for
commercial grade image sensors, CI techniques can only
provide a significant advantage over impulse imaging when
the illumination is less than 125 lux (typical living room
lighting). We extend these results to include the analysis of
CI systems with signal priors taken into account. Hasinoff
et al. [22] (in the context of EDOF) and Zhang et al. [52]
(in the context of motion deblurring) have analyzed the
trade-off between denoising and deblurring for multi-shot
imaging within a time budget. We analyzed the trade-off
between denoising and deblurring for single shot capture.

3 PROBLEM DEFINITION AND NOTATION
We consider linear multiplexed imaging systems that can
be represented as

y = Hx+ n, (1)

where y ∈ RN is the measurement vector, x ∈ RN is
the unknown signal we want to capture, H is the N ×N
multiplexing matrix and n is the observation noise.

3.1 Multiplexing Matrix H
A large array of existing imaging systems follow a linear
image formation model, such as flutter shutter [41], coded
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aperture [47], [28], [48], plenoptic multiplexing [25], illu-
mination multiplexing [44], and many others. The results
of this paper can be used to analyze all such systems. In
this paper, we pay close attention to motion and defocus
deblurring systems which produce shift-invariant blur. For
the case of 1D motion blur, the vectors x and y represent
a scanline in a sharp and blurred image patch, respectively.
The multiplexing matrix H is a Toeplitz matrix where the
rows contain the system point spread function. For the case
of 2D defocus blur, the vectors x and y represent lexico-
graphically reordered image patches, and the multiplexing
matrix H is block Toeplitz.

3.2 Noise Model
To enable tractable analysis, we use an affine noise model
[44], [22]. We model signal independent noise as a Gaus-
sian random variable with variance σ2

r . Signal dependent
photon noise is Poisson distributed with parameter λ equal
to the average signal intensity at a pixel. We approximate
photon noise by a Gaussian distribution with mean and
variance λ. This is a good approximation when λ is greater
than 10. We also drop the pixel-wise dependence of photon
noise and instead assume that the noise variance at every
pixel is equal to the average signal intensity.

3.3 Signal Prior Model
In this paper, we choose to model scene priors using a
GMM because of three characteristics:
• State of the art performance: GMM priors have

provided state of the art results in various imaging
applications such as image denoising, deblurring and
superresolution [51], [19], still-image CS [51], [7],
light field denoising and superresolution [36] and
video compressive sensing [50]. GMM is also closely
related to the union-of-subspace model [15], [14] as
each Gaussian mixture covariance matrix defines a
principle subspace. GMM reconstruction can be inter-
preted as the weighted linear combination of subspace
projections, which is closely related to dictionary
learning and compressive sensing based reconstruction
algorithms. Therefore, performance analysis of GMM
models will track several nonlinear reconstruction al-
gorithm performances faithfully.

• Universal Approximation Property: GMM satisfies
the universal approximation property i.e., (almost) any
prior can be approximated by learning a GMM with a
large enough number of mixtures [45], [40]. To state
this concisely, consider a family of zero mean Gaus-
sian distributionsNλ(x) with variance λ. Let p(x) be a
prior probability density function with a finite number
of discontinuities, that we want to approximate using a
GMM distribution. Then the following Lemma holds:

Lemma 3.1: The sequence pλ(x) which is formed by
the convolution of Nλ(x) and p(x)

pλ(x) =

∫ ∞
−∞
Nλ(x− u)p(u)d(u) (2)

converges uniformly to p(x) on every interior sub-
interval of (−∞,∞).
This Lemma is a restatement of Theorem 2.1 in [45].
The implication of this Lemma is that priors for
images, videos, light-fields and other visual signals
can all be approximated using a GMM prior with
appropriate number of mixtures, thereby allowing our
framework to be applied to analyze a wide range of
computational imaging systems.

• Analytical Tractability: Unlike other state-of-the-art
signal priors such as dictionary learning [2], [35] and
BM3D [12], we can analytically compute a good lower
bound on MMSE [16] as described in section 4.1.

3.4 Performance Characterization
We characterize the performance of multiplexed imaging
systems under (a) the noise model described in section 3.2
and (b) the scene prior model described in section 3.3. For
a given multiplexing matrix H , we will study two metrics
of interest: (1) mmse(H), which is the minimum mean
squared error (MMSE) and (2) multiplexing SNR gain
G(H) defined as the SNR gain (in dB) of the multiplexed
system H over that of the impulse imaging system whose
H-matrix is the identity matrix I:

G(H) = 10log10(
mmse(I)

mmse(H)
). (3)

4 ANALYTIC PERFORMANCE CHARACTERI-
ZATION OF CI SYSTEMS USING GMM PRIOR
We now derive an expression for the MMSE of a given
camera (parameterized by the multiplexing matrix H) in
terms of the noise parameters, and the learned GMM prior
parameters. A GMM distribution is specified by the number
of Gaussian mixtures K, the probability of each Gaussian
mixture αk, and the mean and covariance matrix (mk,Σk)
of each Gaussian:

P (x) =

K∑
k=1

αkN (mk,Σk). (4)

From the given noise model, we obtain the likelihood
distribution of measurements P (y|x). We then compute
the posterior distribution of x, P (x|y), for a given y. And
finally we obtain the MMSE estimator of x (which is the
mean of the posterior distribution) and the corresponding
MSE as a function of H .

4.1 MMSE Derivation
As discussed in section 3.2, we model the signal indepen-
dent and dependent noises using Gaussian noise model. Let
the noise be distributed as N (0,Σn). From Eqn. (1), the
likelihood distribution of the measurement y is given by
P (y|x) = N (Hx,Σn). The benefit of using a GMM prior
model becomes immediately apparent after applying Bayes
rule, where it can be shown that the posterior distribution
P (x|y) is also a GMM distribution [16] with new weights
α̃k(y) and new Gaussian mixture distributions Pk(x|y):
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P (x|y) =

K∑
k=1

α̃k(y)Pk(x|y). (5)

Pk(x|y) is the posterior distribution of the kth Gaussian

Pk(x|y) = N (m̃k(y), Σ̃k) (6)

with mean

m̃k(y) = mk+ΣkH
T (HΣkH

T +Σn)−1(y−Hmk), (7)

and covariance matrix

Σ̃k = Σk − ΣkH
T (HΣkH

T + Σn)−1HΣk. (8)

The new weights α̃k(y) are the old weights αk modified
by the probability of y belonging to the kth Gaussian
mixture

α̃k(y) =
αkPk(y)∑K
i=1 αiPi(y)

, (9)

where Pk(y), which is the probability of y belonging to the
kth Gaussian mixture, is given by:

Pk(y) = N (y;Hmk, HΣkH
T + Σn) (10)

The MMSE estimator x̂(y) is the mean of the posterior
distribution P (x|y), i.e.,

x̂(y) =

K∑
k=1

α̃k(y)m̃k(y), (11)

and the MMSE is given by

mmse(H) = E||x− x̂(y)||2

=

∫
y

(

∫
x

||x− x̂(y)||2P (x|y)dx)P (y)dy,

(12)

where P (y) is the marginal distribution of y and is given
by [16]:

P (y) =

K∑
i=k

αkPk(y), (13)

with Pk(y) defined as in Eqn. (10).
The mmse(H) can be written as a sum of two terms: an

intra-mixture error term and an inter-mixture error term.

mmse(H) =

K∑
k=1

αkTr(Σ̃k)

+

K∑
k=1

αk

∫
y

||x̂(y)− m̃k(y)||2Pk(y)dy,

(14)

where Tr denotes matrix trace. The first term is the intra-
mixture error, which is given by the mean MSE for the case
when y (which is sampled from one of the K Gaussian
mixtures) is classified to the correct Gaussian mixture. The

second term is the inter-mixture error, which is the MSE
due to inter-mixture confusion. The proof for the above
decomposition is given in Appendix A. After a quick look
back to Eqn. (8), it can be seen that the first term in Eqn.
(14) is independent of the observation y and depends only
on the multiplexing matrix H , the noise covariance Σn,
and the learned GMM prior parameters αk, mk, and Σk.

Performance Bound for CI with Signal Priors. Unfor-
tunately we need Monte-Carlo simulations to compute the
second term in Eqn. (14). However, we can use the first
term as a lower bound on MMSE (and hence upper bound
on SNR), i.e.,

mmse(H) ≥
K∑
k=1

αkTr(Σ̃k), (15)

Eqn. (15) bounds the performance of any camera, and
can be computed analytically from only the parameters
for the camera, noise, and learned signal prior. For fully-
determined systems at low noise condition (high lighting
level) we can expect this lower bound to be tight. In fact
we have observed the same in our experiments. Thus, in the
future, this lower bound alone could be used to optimize
CI systems in the presence of signal priors.

4.2 Incorporating the Noise Model
For signal independent noise, we assume noise to be
isotropic with variance σ2

r . As discussed in section 3.2,
we approximate the signal dependent noise n by signal
independent Gaussian noise with variance equal to the
average value of the captured signal. Note that the increase
in light gathering power, and hence also signal-dependent
noise, is implicitly encoded in the multiplexing matrix
H . The total light gathering power for a given pixel is
determined by the row-sum of H . Let C(H) be the matrix
light throughput, defined as the average row sum of H ,
and let m be the pixel mean of the impulse image, then
the photon noise variance is σ2

p = m ·C(H), and the total
noise is modeled as

P (n|x) = N (0,Σn),Σn = (σ2
r + σ2

p)I

The corresponding MMSE estimator, MMSE and the
lower bound on MMSE are given by Eqn. (11), (14) and
(15) respectively with Σn = (σ2

r + σ2
p)I.

5 COMMON FRAMEWORK FOR ANALYSIS
OF CI SYSTEMS
We study the performance of various CI systems under
the practical consideration of illumination conditions and
sensor characteristics.

5.1 Performance Characterization
Computational Imaging (CI) systems improve upon tradi-
tional imaging systems by allowing more light to be cap-
tured by the sensor. However, captured images then require
decoding, which typically results in noise amplification. To
improve upon performance, the benefit of increased light



6

Fig. 2. Relation between light levels and average
signal levels for different camera specifications: Given
the illumination level and camera specifications, the
average signal level J of the impulse imaging system
is computed using Eqn. (16). We consider three typical
camera specifications: 1) a high end SLR camera, 2)
a machine vision camera (MVC) and 3) a smartphone
camera (SPC). See section 5.3 for the chosen camera
parameter values.

throughput needs to outweigh the degradations caused by
the decoding process. The combined effect of these two
processes is measured as the SNR gain.

To calculate the SNR gain, we need to first define an
appropriate baseline. Following the approach of [10], we
choose impulse imaging as the baseline for comparison.
This corresponds to a traditional camera with a stopped
down aperture (so that entire scene is within depth of field)
or a short exposure duration (so as to avoid motion blur)
for EDOF and motion deblurring systems, respectively.

The baseline chosen by [10] does not address the fact that
impulse imaging performance can be significantly improved
upon by state of the art image denoising methods [12],
[6], [31]. We correct this by denoising our impulse images
using the GMM prior. The effect this has on performance is
clearly seen in Figure 1. The dotted blue line corresponds
to impulse imaging without denoising, while the solid blue
line corresponds to impulse imaging after denoising using
the GMM prior. Thus, the results presented in Figures 4, 5
show the performance improvements obtained due to CI
above and beyond the performance of impulse imaging
with state of the art denoising. Another important result
of this paper, is that much like [6], [31], we are also able
to quantify the significant performance improvements that
can be obtained through image denoising.

5.2 Scene Illumination Level
The primary variable that controls the SNR of impulse
imaging is the scene illumination level. As discussed in
section 3.2, we consider two noise types: photon noise
(signal dependent) and read noise (signal independent).
Photon noise is directly proportional to the scene illumina-
tion level, whereas, read noise is independent of it. At low
illumination levels, read noise dominates the photon noise
but, since signal power is low, the SNR is typically low. At

high scene illumination levels, photon noise dominates the
read noise. Recognizing this, we compare CI techniques to
impulse imaging over a wide range of scene illumination
levels, as shown in Figure 2. Our results show that over the
entire range of scene illuminations, CI techniques provide
performance benefits, as seen in Figures 4 and 5.

5.3 Imaging System Specification
The actual relationship between scene illumination (in lux)
and the signal level captured by sensor depends upon
camera characteristics such as the f-number (ratio of focal
length to the aperture size) and exposure time, and sensor
parameters such as quantum efficiency and pixel size. Here,
we choose three different example cameras that span the a
wide range of consumer imaging devices: 1) a high end
SLR camera, 2) a machine vision camera (MVC) and 3)
a smartphone camera (SPC). For each of these example
camera types, we choose parameters that are typical in
the marketplace today: sensor pixel size: δSLR = 8µm
for the SLR camera, δMVC = 2.5µm for the MVC, and
δSPC = 1µm for the SPC. We also assume a sensor read
noise of σr = 4e− which is typical for today’s CMOS
sensors.

Given the scene illumination level Isrc (in lux), the
average scene reflectivity (R) and the camera parameters
such as the f-number (F/#), exposure time (t), sensor
quantum efficiency (q), and pixel size (δ), the average signal
level in photo-electrons (J) of the impulse camera is given
by [10]1:

J = 1015(F/#)−2tIsrcRq(δ)
2. (16)

In our experiments, we assume an average scene reflectivity
of R = 0.5 and sensor quantum efficiency of q = 0.5,
aperture setting of F/11 and exposure time of t = 6
milliseconds, which are typical settings in consumer pho-
tography. Figure 2 shows the average signal values J for the
three camera settings and some typical scene illumination
levels.

Sensor characteristics impact the SNR directly: sensors
with larger pixels produce a higher SNR at the same
scene illumination level. The x-axis of the plots shown in
Figures 1, 4 and 5 for SLR, MVC and the SPC are simply
shifted relative to one another. Note that CI techniques
provide quantifiable performance improvements over the
entire range of lighting and sensor characteristics.

5.4 Experimental Details
The details of the experimental setup are as follows
• Learning: We learn GMM patch priors from a large

collection of about 50 million training patches. For
learning we use a variant of the Expectation Maxi-
mization approach to ascertain the model parameters.
We also test that the learned model is an adequate
approximation of the real image prior by performing

1. The signal level will be larger for CI techniques. The increase in
signal is encoded in the multiplexing matrix H , as discussed in Section 4
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rigorous statistical analysis and comparing perfor-
mance of the learned prior with state of the art image
denoising methods [12].

• Analytic Performance metric: Analytic performance
is compared using the MMSE metric. Once the MMSE
is computed for the impulse and CI systems, we
compute the multiplexing SNR gain in dB using Eqn.
(3). The analytic multiplexing gain for various CI
systems are shown in Figures 1, 4 and 5(a).

• Analytic Performance without Prior: To calculate
the performance of CI systems without signal priors
taken into account, we compute the MSE as:

mse(H) = Tr(H−1ΣnH
−T ), (17)

where H is the corresponding multiplexing matrix and
Σn is the noise covariance matrix.

• Analytic Performance with Prior: The analytic per-
formance of CI systems with priors taken into account
is computed as described in Section 4 (Eqn. (14)).
These results are shown in Figures 1, 4 and 5(a).

• Simulations Results for Comparison: In order to
validate our analytic predictions, we also performed
extensive simulations. In our simulations, we used
the MMSE estimator, Eqn. (11), to reconstruct the
original (sharp) images. The MMSE estimator has
been shown to provide state of art results for image
denoising [31], and here we extend these powerful
methods for general demultiplexing. Some images of
our simulation experiments are shown in Figures 3
and 5(b), providing visual and qualitative comparison
between CI and traditional imaging techniques. The
simulation results are consistent with our analytic
predictions and show that CI provides performance
benefits over a wide range of imaging scenarios.

6 PERFORMANCE ANALYSIS OF EDOF
SYSTEMS
We study the SNR gain of various EDOF systems with
and without the use of signal priors. For the signal prior,
we learn a GMM patch prior, of patch size 16 × 16, with
1770 Gaussian mixtures. First we study the performance of
a particular EDOF system, focal sweep [26], and compare
it with impulse imaging. We assume the aperture size of
the focal sweep system to be 11 × 11 times bigger than
that of the impulse camera, corresponding to an aperture
setting of F/1. Hence, the light throughput of focal sweep
is about 121 times that of the impulse camera. Figure 1
shows the analytical SNR gain for focal sweep and impulse
cameras with and without using signal prior. The plot shows
performance measured relative to impulse imaging without
a signal prior (no denoising). Without the prior, focal sweep
has a huge SNR gain over impulse imaging at low photon
to read noise ratio, J/σ2

r . This is consistent with the result
obtained in [10]. However, when the signal prior is taken
into account, the SNR gain is modest even at low J/σ2

r .
From the plot it is also clear that the the use of prior

Fig. 3. Simulation performance of focal sweep [26]
and impulse cameras: Subplots (a) and (b) show the
simulation results obtained by focal sweep and impulse
imaging for low (J/σ2

r = 0.2) and high (J/σ2
r = 20)

photon to read noise ratios. For the low photon to
read noise ratio case, the use of prior increases SNR
by around 14dB for both focal sweep and impulse
imaging. Multiplexing increases SNR by about 8 dB
regardless of the use of prior. For the high photon to
read noise ratio case, the SNR gains due to both prior
and multiplexing decrease.

increases SNR more than does multiplexing. Figure 3(a-
b) shows the simulation results obtained from focal sweep
and impulse imaging for a low (J/σ2

r = 0.2) and a high
(J/σ2

r = 20) photon to read noise ratios. In the low photon
to read noise ratio case, the use of prior increases SNR by
around 14dB for both focal sweep and impulse imaging.
Multiplexing increases SNR by about 8 dB regardless of
the use of prior. When the ratio of photon to read noise
is large, the SNR gains due to both prior and multiplexing
decrease.

Further, we the study the performance of various other
EDOF systems such as cubic phase wavefront coding [13],
and the coded aperture designs by Zhou et al. [53] and
Levin et al. [28] 2. Figure 4 shows the SNR gain (in dB)
of these EDOF systems with respect to impulse imaging
with a signal prior (denoising). Wavefront coding achieves
a peak SNR gain of 8.8 dB and an average SNR gain of
about 7 dB.
Practical Implications: The main conclusions of our anal-
ysis are

• The use of signal priors improves the performance of
both CI and impulse imaging significantly.

• Good EDOF systems are about 7 dB better than

2. The performance of coded aperture systems reported here is overop-
timistic because we assume perfect kernel estimation, as discussed in
Section 1.
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Fig. 4. Comparison of EDOF systems when signal
priors are taken into account: We plot the SNR gain
of various EDOF systems at different photon to read
noise ratios (J/σ2

r ). In the extended x-axis, we also
show the effective illumination levels (in lux) required to
produce the given J/σ2

r for the three camera specifica-
tions: SLR, MVC and SPC. The EDOF systems that we
consider are: cubic phase wavefront coding [13], focal
sweep camera [26], and the coded aperture designs by
Zhou et al. [53] and Levin et al. [28]. Signal priors are
used to improve performance for both CI and impulse
cameras. Wavefront coding achieves a peak SNR gain
of 8.8 dB and an average SNR gain of about 7 dB.

comparable impulse imaging systems after the effect
of signal priors are taken into account, thus demon-
strating the benefits of multiplexing above and beyond
those of non-linear reconstruction algorithms.

• Contrary to previous results [10], our analysis shows
that CI systems confer significant performance benefits
over impulse imaging over a wide range of illumina-
tion levels and camera specifications.

7 PERFORMANCE ANALYSIS OF MOTION
DEBLURRING SYSTEMS
We study the performance of two motion deblurring sys-
tems: the flutter shutter [41] and motion invariant camera
[33]. Again, we focus our attention on the case where
signal priors are taken into account. For this experiment,
we learn a GMM patch prior, of patch size 4 × 256,
with 1900 Gaussian mixtures. For the motion deblurring
cameras, we set the exposure time to be 33 times that of
the impulse camera, corresponding to an exposure time of
200 milliseconds. The binary flutter shutter code that we
used in our experiment has 15 ’ones’ and hence the light
throughput is 15 times that of the impulse imaging system.
The light throughput of the motion invariant camera is
33 times that of the impulse camera. Figure 5(a) shows
the analytic SNR gain (in dB) of the motion deblurring
systems with respect to impulse imaging when signal priors
are taken into account3. Motion invariant imaging achieves

3. Flutter shutter performance reported here is overoptimistic because
we assume perfect kernel estimation, as discussed in Section 1.

Fig. 5. Comparison of motion deblurring cameras: We
study the performance of motion invariant [33], flutter
shutter [41] and impulse cameras when image priors
are taken into account. Subplot (a) shows the analytic
SNR gain (in dB) vs. photon to read noise ratio J/σ2

r

for the two motion deblurring systems. In the extended
x-axis, we also plot the corresponding light levels (in
lux) for the three different camera specifications: SLR,
MVC and SPC. The motion invariant camera achieves
a peak SNR gain of 7.3 dB and an average SNR gain
of about 4.5 dB. Subplots (b-c) show the corresponding
simulation results. At a low photon to read noise ratio
of J/σ2

r = 0.2, motion invariant imaging performs 7.4
dB better than impulse imaging. At the high photon to
read noise ratio of J/σ2

r = 20, it is only 1.2 dB better.

a peak SNR gain of 7.3 dB and an average SNR gain
of about 4.5 dB. Figure 5(b-c) show the corresponding
simulation results. At the low photon to read noise ratio
of J/σ2

r = 0.2, motion invariant imaging performs 7.4 dB
better than impulse imaging. At the high photon to read
noise ratio of J/σ2

r = 20, it is only 1.2 dB better. Also,
the use of prior alone increases the performance of impulse
imaging by 15.2 dB for the low photon to read noise case
and by 2.4 dB for the high photon to read noise case. CI
systems also show similar increases due to the use of prior
alone.
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Practical Implications: The main conclusion of our anal-
ysis is

• The use of signal priors improves the performance of
both CI and impulse imaging significantly.

• Good multiplexed motion deblurring systems perform
4.5 dB better than impulse imaging after signal priors
are taken into account. Performance is consistently
better than impulse imaging for a wide range of
illumination conditions and camera specifications.

8 DISCUSSIONS

We present a framework to comprehensively analyze the
performance of CI systems. Our framework takes into
account the effect of multiplexing, affine noise and signal
priors. We model signal priors using a GMM, which can
approximate almost all prior signal distributions. More
importantly, the prior is analytically tractable. We use the
MMSE metric to characterize the performance of any given
linear CI system. Our analysis allows us to determine
the increase in performance of CI systems when signal
priors are taken into account. We use our framework to
analyze several CI techniques, including both EDOF and
motion deblurring cameras. Our analysis reveals that: 1)
Multiplexing gain is much more modest when signal priors
are taken into account, and 2) Signal priors increase SNR
more than multiplexing. Moreover, we use our framework
to establish the following practical implications: 1) Good
EDOF systems can achieve a multiplexing gain of 7 dB over
impulse imaging, and 2) Good motion deblurring system
can perform 4.5 dB better than impulse imaging.

While the results reported in this paper are specific to
EDOF and motion deblurring cameras, the framework can
be applied to analyze any linear CI camera. In the future,
we would like to use our framework to learn priors and an-
alyze multiplexing performance for other types of datasets
(e.g. videos, hyperspectral volumes, light fields, reflectance
fields). Of particular interest is the analysis of compressive
CI techniques. Analyzing the performance of compressed
sensing matrices has been a notoriously difficult problem,
except in a few special cases (e.g. Gaussian, Bernouli, and
Fourier matrices). Our framework can gracefully handle
any arbitrary multiplexing matrix, and thus could prove
to be a significant contribution to the compressed sensing
community. By the same token, we would like to apply
our analysis to overdetermined systems so that we may
also analyze multiple image capture CI techniques (e.g.
Hasinoff et al. [22] and Zhang et al. [52]). Finally, and
perhaps most significantly, we would like to apply our
framework towards the problem of parameter optimization
for different CI techniques. For instance, we may use
our framework to determine the optimal aperture size for
focal sweep cameras, the optimal flutter shutter code for
motion deblurring, or the optimal measurement matrix for
a compressed sensing system. In this way, we believe our
framework can be used to exhaustively analyze the field
of CI research and provide invaluable answers to existing
open questions in the field.

9 APPENDIX A: DERIVATION OF MMSE
FOR GMM PRIOR
We show that the MMSE can be written as the sum of two
terms: an intra-mixture error term and an inter-mixture error
term, see Eqn. (14). The original expression of MMSE is
given by Eqn. (12). Let us first concentrate on the inner
integral in Eqn. (12):∫

x

||x− x̂(y)||2P (x|y)dx. (18)

Using the expression for P (x|y) in Eqn. (5), the above
integral can be written as

K∑
k=1

α̃k(y)

∫
x

||x− x̂(y)||2Pk(x|y)dx.

We then add and subtract m̃k(y) to obtain

K∑
k=1

α̃k(y)

∫
x

||x− m̃k(y) + m̃k(y)− x̂(y)||2Pk(x|y)dx.

Using the expansion ||a+ b||2 = ||a||2 + ||b||2 + 2aT b with
a = x−m̃k(y) and b = m̃k(y)− x̂(y) and keeping in mind
that the term b is independent of x, we get

K∑
k=1

α̃k(y)

∫
x

||x− m̃k(y)||2Pk(x|y)dx

+

K∑
k=1

α̃k(y)||m̃k(y)− x̂(y)||2

+

K∑
k=1

α̃k(y)(m̃k(y)− x̂(y))T
∫
x

(x− m̃k(y))Pk(x|y)dx.

Since, Pk(x|y) is a Gaussian distribution with mean m̃k(y)

and covariance Σ̃k, see Eqn. (6), we can rewrite the above
expression as

K∑
k=1

α̃k(y)Tr(Σ̃k) +

K∑
k=1

α̃k(y)||m̃k(y)− x̂(y)||2.

Thus, till now, we have shown that the inner integral of the
MMSE, Eqn. (18), is given by the above expression. Now
we consider the outer integral in Eqn. (12).

Taking the outer integral into account, the MMSE can
be written as

K∑
k=1

Tr(Σ̃k)

∫
y

α̃k(y)P (y)dy

+

K∑
k=1

∫
y

||m̃k(y)− x̂(y)||2α̃k(y)P (y)dy.

Using the definitions of α̃k(y) , Eqn. (9), and P (y), Eqn.
(13), we can rewrite the above expression as
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K∑
k=1

αkTr(Σ̃k) +

K∑
k=1

αk

∫
y

||m̃k(y)− x̂(y)||2Pk(y)dy,

which expresses the MMSE as the sum of the intra-mixture
and inter-mixture terms, as in Eqn. (14).
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